

Reg. No.	:	***************************************	
----------	---	---	--

Just Find the distance from S(1, 1, 3) to the plane 3x + 2y + 6z = 6.

Third Semester B.Sc. Degree (CBCSS – OBE – Regular/Supplementary/
Improvement) Examination, November 2022
(2019 Admission Onwards)
COMPLEMENTARY ELECTIVE COURSE IN MATHEMATICS
3C03 MAT-PH: Mathematics for Physics – III

Time: 3 Hours

Max. Marks: 40

PART – A

Answer any four questions. Each question carries one mark.

- 1. Evaluate $\int_{1}^{2} \int_{0}^{4} 2xy \, dy \, dx$.
- 2. Find a vector parallel to the line of intersection of the planes 3x 6y 2z = 15 and 2x + y 3z = 5.
- 3. Let $r(t) = (t^2 + 1)i + (2t 1)j 2tk$ be the position of a particle in space at time t. Find particles velocity and acceleration vectors.
- 4. Find the Laplace transform of eat.
- 5. What is the fundamental period of $f(x) = \sin 2\pi x$?

ig. Find the arc length of the curd - (TARQ sint + cost) + it cost - sint), from

Answer any seven questions. Each question carries two marks.

- 6. Find the volume of the prism whose base is the triangle in xy plane bounded by the x axis and the lines y = x and x = 1 and whose top lies in the plane z = 3 x y.
- 7. Find the average value of $f(x, y) = x \cos xy$ over the rectangle $R: 0 \le x \le \pi$, $0 \le y \le 1$.
- 8. Find the area enclosed by the lemniscate $r^2 = 4\cos 2\theta$.

SSXSI

9. Find an equation for the plane through A(0, 0, 1), B(2, 0, 0) and C(0, 3, 0).

- 10. Find the distance from S(1, 1, 3) to the plane 3x + 2y + 6z = 6.
- 11. Find the unit tangent vector of the curve $r(t) = (1 + 2\cos t)i + (2\sin t)j + \sqrt{3tk}$
- 12. Find the derivative of $f(x, y, z) = x^3 xy^2 z$ at $P_0(1, 1, 0)$ in the direction of V = 2i - 3j + 6k.
- 13. Find the inverse Laplace transform of $\frac{6s+7}{2s^2+4s+10}$.
- 14. Find L(t) if $f(t) = \cos^2 \omega t$.
- 15. Find e^{-t}∗e^t.
- 16. Find the Fourier series of the function $f(x) = x + \pi$ if $\pi < x < \pi$ and $f(x + 2\pi) = f(x).$

PART - C

Answer any four questions. Each question carries three marks.

- 17. Find the volume of the wedge like solid that lies beneath the surface $z = 16 - x^2 - y^2$ and above the region R bounded by the curve $y = 2\sqrt{x}$, the line y = 4x - 2, and the x-axis.
- 18. Using triple integrals find the volume of the region cut from the cylinder $x^2 + y^2 = 4$ by the plane z = 0 and the plane x + z = 3.
- 19. Find the arc length of the curve r(t) = (t sint + cost)i + (t cost sint)j from $t = \sqrt{2}$ to t = 2.
- 20. Using Laplace method solve the initial value problem y'' + y' + 9y = 0, y(0) = 0.10, y'(0) = 0.
- 21. Apply convolution theorem to find f(t) if $L(f) = \frac{2\pi s}{(s^2 + \pi^2)^2}$.
- 22. Find the Fourier series for $f(x) = \begin{cases} x & \text{if } -\pi < x < 0 \\ \pi x & \text{if } 0 < x < \pi \end{cases}$
- 23. Find the Fourier series of the function f(x) = $\begin{cases}
 0 & \text{if } -2 < x < 1 \\
 k & \text{if } -1 < x < 1 \\
 0 & \text{if } 1 < x < 2
 \end{cases}$ with period p = 4.

PART - D

Answer any two questions. Each question carries five marks.

- 24. Evaluate $\int_0^3 \int_0^4 \int_{x=\frac{y}{2}}^{x=\frac{y}{2}+1} \left(\frac{2x-y}{2} + \frac{z}{3} \right)$ dxdydz by applying the transformation $u = \frac{2x-y}{2}$, $v = \frac{y}{2}$, $w = \frac{z}{3}$ and integrating over an appropriate region in uvw-space.
- 25. Find T, N and K for $r(t) = (\cos^3 t)i + (\sin^3 t)j$, $0 < t < \frac{\pi}{2}$.
- 26. Using Laplace transform solve $y'_1 2y_1 + 3y_2 = 0$, $y'_2 y_1 + 2y_2 = 0$, $y_1(0) = 1$, $y_2(0) = 0$.
- 27. Find the two half range expansions of the function

$$f(x) = \begin{cases} \frac{2k}{L}x & \text{if } 0 < x < \frac{L}{2} \\ \frac{2k}{L}(L-x) & \text{if } \frac{L}{2} < x < L \end{cases}.$$